Synchronization of a class of cyclic discrete-event systems describing legged locomotion
نویسندگان
چکیده
It has been shown that max-plus linear systems are well suited for applications in synchronization and scheduling, such as the generation of train timetables, manufacturing, or traffic. In this paper we show that the same is true for multi-legged locomotion. In this framework, the max-plus eigenvalue of the system matrix represents the total cycle time, whereas the max-plus eigenvector dictates the steady-state behavior. Uniqueness of the eigenstructure also indicates uniqueness of the resulting behavior. For the particular case of legged locomotion, the movement of each leg is abstracted to two-state circuits: swing and stance (leg in flight and on the ground, respectively). The generation of a gait (a manner of walking) for a multiple legged robot is then achieved by synchronizing the multiple discrete-event cycles via the max-plus framework. By construction, different gaits and gait parameters can be safely interleaved by using different system matrices. In this paper we address both the transient and steady-state behavior for a class of gaits by presenting closed-form expressions for the max-plus eigenvalue and max-plus eigenvector of the system matrix and the coupling time. The significance of this result is in showing guaranteed robustness to perturbations and gait switching, and also a systematic methodology for synthesizing controllers that allow for legged robots to change rhythms fast.
منابع مشابه
Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملRecent Developments in Discrete Event Systems
This article is a brief exposure of the process approach to a newly emerging area called "discrete event systems" in control theory and summarizes some of the recent developments in this area. Discrete event systems is an area of research that is developing within the interstices of computer, control and communication sciences. The basic direction of research addresses issues in the analysis an...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملModel predictive control for discrete-event systems with soft and hard synchronization constraints
Max-plus-linear models can be used to model discrete-event systems with only synchronization and no concurrency. The synchronization constraints in max-plus-linear discrete-event systems are hard, i.e., they cannot be broken under any circumstance. We consider a class of discrete-event systems with both hard and soft synchronization constraints, i.e., if necessary, some synchronization conditio...
متن کاملUsing Interval Petri Nets and Timed Automata for Diagnosis of Discrete Event Systems (DES)
A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of physical events. Because of the special nature of these systems, different tools are currently used for their analysis, design and modeling. The main focus of this paper is the presentation of a new modeling approach of Discrete Event Systems. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Event Dynamic Systems
دوره 26 شماره
صفحات -
تاریخ انتشار 2016